Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Kidney Int ; 105(5): 1088-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382843

RESUMO

Individualized pre-pregnancy counseling and antenatal care for women with chronic kidney disease (CKD) require disease-specific data. Here, we investigated pregnancy outcomes and long-term kidney function in women with COL4A3-5 related disease (Alport Syndrome, (AS)) in a large multicenter cohort. The ALPART-network (mAternaL and fetal PregnAncy outcomes of women with AlpoRT syndrome), an international collaboration of 17 centers, retrospectively investigated COL4A3-5 related disease pregnancies after the 20th week. Outcomes were stratified per inheritance pattern (X-Linked AS (XLAS)), Autosomal Dominant AS (ADAS), or Autosomal Recessive AS (ARAS)). The influence of pregnancy on estimated glomerular filtration rate (eGFR)-slope was assessed in 192 pregnancies encompassing 116 women (121 with XLAS, 47 with ADAS, and 12 with ARAS). Median eGFR pre-pregnancy was over 90ml/min/1.73m2. Neonatal outcomes were favorable: 100% live births, median gestational age 39.0 weeks and mean birth weight 3135 grams. Gestational hypertension occurred during 23% of pregnancies (reference: 'general' CKD G1-G2 pregnancies incidence is 4-20%) and preeclampsia in 20%. The mean eGFR declined after pregnancy but remained within normal range (over 90ml/min/1.73m2). Pregnancy did not significantly affect eGFR-slope (pre-pregnancy ß=-1.030, post-pregnancy ß=-1.349). ARAS-pregnancies demonstrated less favorable outcomes (early preterm birth incidence 3/11 (27%)). ARAS was a significant independent predictor for lower birth weight and shorter duration of pregnancy, next to the classic predictors (pre-pregnancy kidney function, proteinuria, and chronic hypertension) though missing proteinuria values and the small ARAS-sample hindered analysis. This is the largest study to date on AS and pregnancy with reassuring results for mild AS, though inheritance patterns could be considered in counseling next to classic risk factors. Thus, our findings support personalized reproductive care and highlight the importance of investigating kidney disease-specific pregnancy outcomes.


Assuntos
Nefrite Hereditária , Complicações na Gravidez , Nascimento Prematuro , Insuficiência Renal Crônica , Feminino , Humanos , Gravidez , Recém-Nascido , Lactente , Resultado da Gravidez/epidemiologia , Nefrite Hereditária/genética , Peso ao Nascer , Estudos Retrospectivos , Nascimento Prematuro/etiologia , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Proteinúria , Aconselhamento
2.
Artigo em Inglês | MEDLINE | ID: mdl-38317457

RESUMO

BACKGROUND: Clinical variability among individuals with heterozygous pathogenic/likely pathogenic (P/LP) variants in the COL4A3/COL4A4 genes (also called autosomal dominant Alport syndrome or COL4A3/COL4A4 related disorder) is huge; many individuals are asymptomatic or show microhematuria, while others may develop proteinuria and chronic kidney disease (CKD). The prevalence of simple kidney cysts (KC) in the general population varies according to age, and patients with advanced CKD are prone to have them. A possible association between heterozygous COL4A3, COL4A4, and COL4A5 P/LP variants and KC has been described in small cohorts. The presence of KC in a multicenter cohort of individuals with heterozygous P/LP variants in the COL4A3/COL4A4 genes is assessed in this study. METHODS: We evaluated the presence of KC by ultrasound in 157 individuals with P/LP variants in COL4A3 (40.7%) or COL4A4 (53.5%) without kidney replacement therapy. The association between presence of KC and age, proteinuria, eGFR, and causative gene was analyzed. Prevalence of KC was compared with historical case series in the general population. RESULTS: Half of the individuals with P/LP variants in COL4A3/COL4A4 showed KC, which is a significantly higher percentage than in the general population. Only 3.8% (6/157) had cystic nephromegaly. Age and eGFR showed an association with the presence of KC (p<0.001). No association was found between KC and proteinuria, sex, or causative gene. CONCLUSIONS: Individuals with COL4A3/COL4A4 P/LP variants are prone to develop KC more frequently than the general population, and their presence is related to age and to eGFR. Neither proteinuria, sex nor the causative gene influences the presence of KC in these individuals.

3.
Kidney Int Rep ; 9(2): 249-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344736

RESUMO

Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U-net algorithm was created using the nnUNet approach. The training and internal cross-validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (±28) minutes, whereas manual corrections of the algorithm output took 8.5 (±9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real-world clinical cases demonstrate its suitability for clinical application.

4.
Clin Kidney J ; 16(12): 2314-2326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046016

RESUMO

Artificial intelligence (AI) is a science that involves creating machines that can imitate human intelligence and learn. AI is ubiquitous in our daily lives, from search engines like Google to home assistants like Alexa and, more recently, OpenAI with its chatbot. AI can improve clinical care and research, but its use requires a solid understanding of its fundamentals, the promises and perils of algorithmic fairness, the barriers and solutions to its clinical implementation, and the pathways to developing an AI-competent workforce. The potential of AI in the field of nephrology is vast, particularly in the areas of diagnosis, treatment and prediction. One of the most significant advantages of AI is the ability to improve diagnostic accuracy. Machine learning algorithms can be trained to recognize patterns in patient data, including lab results, imaging and medical history, in order to identify early signs of kidney disease and thereby allow timely diagnoses and prompt initiation of treatment plans that can improve outcomes for patients. In short, AI holds the promise of advancing personalized medicine to new levels. While AI has tremendous potential, there are also significant challenges to its implementation, including data access and quality, data privacy and security, bias, trustworthiness, computing power, AI integration and legal issues. The European Commission's proposed regulatory framework for AI technology will play a significant role in ensuring the safe and ethical implementation of these technologies in the healthcare industry. Training nephrologists in the fundamentals of AI is imperative because traditionally, decision-making pertaining to the diagnosis, prognosis and treatment of renal patients has relied on ingrained practices, whereas AI serves as a powerful tool for swiftly and confidently synthesizing this information.

5.
Clin Kidney J ; 16(6): 985-995, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260991

RESUMO

Background: The clinical manifestations of autosomal dominant polycystic kidney disease (ADPKD) usually appear in adulthood, however pediatric series report a high morbidity. The objective of the study was to analyze the clinical characteristics of ADPKD in young adults. Methods: Family history, hypertension, albuminuria, estimated glomerular filtration rate (eGFR) and imaging tests were examined in 346 young adults (18-30 years old) out of 2521 patients in the Spanish ADPKD registry (REPQRAD). A literature review searched for reports on hypertension in series with more than 50 young (age <30 years) ADPKD patients. Results: The mean age of this young adult cohort was 25.24 (SD 3.72) years. The mean age at diagnosis of hypertension was 21.15 (SD 4.62) years, while in the overall REPQRAD population was aged 37.6 years. The prevalence of hypertension was 28.03% and increased with age (18-24 years, 16.8%; 25-30 years, 36.8%). Although prevalence was lower in women than in men, the age at onset of hypertension (21 years) was similar in both sexes. Mean eGFR was 108 (SD 21) mL/min/1.73 m2, 38.0% had liver cysts and 3.45% of those studied had intracranial aneurysms. In multivariate analyses, hematuria episodes and kidney length were independent predictors of hypertension (area under the curve 0.75). The prevalence of hypertension in 22 pediatric cohorts was 20%-40%, but no literature reports on hypertension in young ADPKD adults were found. Conclusions: Young adults present non-negligible ADPKD-related morbidity. This supports the need for a thorough assessment of young adults at risk of ADPKD that allows early diagnosis and treatment of hypertension.

8.
Nephron ; 147(3-4): 152-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36088902

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cause of end-stage kidney disease. Currently, tolvaptan is the only treatment that has proven to delay disease progression. The most notable side effect of this therapy is drug-induced liver injury; however, recently, there have been two reports of creatine kinase (CK) elevation in ADPKD patients on tolvaptan treatment. We set out to monitor and determine the actual incidence of CK elevation and evaluate its potential association with other clinical factors. METHODS: This is an observational retrospective multicenter study performed in rapidly progressive ADPKD patients on tolvaptan treatment from Barcelona, Spain. Laboratory tests, demographics, treatment dose, and reported symptoms were collected from October 2018 to March 2021. RESULTS: Ninety-five patients initiated tolvaptan treatment during follow-up. The medication had to be discontinued in 31 (32.6%) patients, primarily due to aquaretic effects (12.6%), elevated liver enzymes (8.4%), and symptomatic or persistently elevated CK levels (3.2%). Moreover, a total of 27 (28.4%) patients had elevated CK levels, with most of them being either transient (12.6%), mild and asymptomatic (4.2%), or resolved after dose reduction (3.2%) or temporary discontinuation (2.1%). CONCLUSION: We pre-sent the largest cohort that has monitored CK levels in a real-life setting, finding them elevated in 28.4% of patients. More research and monitoring will help us understand the clinical implications and the pathophysiological mechanism of CK elevation in this population.


Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Tolvaptan/efeitos adversos , Rim Policístico Autossômico Dominante/complicações , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Falência Renal Crônica/complicações , Progressão da Doença , Rim
9.
Nefrologia (Engl Ed) ; 43 Suppl 2: 91-95, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38278716

RESUMO

Fabry disease or also called Anderson-Fabry disease (FD) is a rare disease caused by pathogenic variants in the GLA gene, located on the X chromosome. This gene is involved in the metabolism of glycosphingolipids and its pathogenic variants cause a deficit or absence of α-galactosidase A causing the deposition of globotriaosylceramide throughout the body. Females have a variable phenotypic expression and a better prognosis than males. This is due to the X chromosome inactivation phenomenon. We present a clinical case of Fabry disease in a female with predominantly renal involvement and demonstrate how the X chromosome inactivation phenomenon is tissue dependent, showing preferential inactivation of the mutated allele at the renal level.


Assuntos
Doença de Fabry , Masculino , Feminino , Humanos , Doença de Fabry/genética , Doença de Fabry/patologia , Inativação do Cromossomo X , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Rim/patologia , Fenótipo
10.
Nefrologia (Engl Ed) ; 42(4): 367-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404270

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent cause of genetic renal disease and accounts for 6-10% of patients on kidney replacement therapy (KRT). Very few prospective, randomized trials or clinical studies address the diagnosis and management of this relatively frequent disorder. No clinical guidelines are available to date. This is a revised consensus statement from the previous 2014 version, presenting the recommendations of the Spanish Working Group on Inherited Kidney Diseases, which were agreed to following a literature search and discussions. Levels of evidence mostly are C and D according to the Centre for Evidence-Based Medicine (University of Oxford). The recommendations relate to, among other topics, the use of imaging and genetic diagnosis, management of hypertension, pain, cyst infections and bleeding, extra-renal involvement including polycystic liver disease and cranial aneurysms, management of chronic kidney disease (CKD) and KRT and management of children with ADPKD. Recommendations on specific ADPKD therapies are provided as well as the recommendation to assess rapid progression.


Assuntos
Rim Policístico Autossômico Dominante , Criança , Humanos , Consenso , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/terapia , Estudos Prospectivos
12.
Nefrología (Madrid) ; 42(4): 367-389, Julio - Agosto 2022. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-205780

RESUMO

La poliquistosis renal autosómica dominante (PQRAD) es la causa más frecuente de nefropatía genética y representa entre el 6 y el 10% de los pacientes en terapia de reemplazo renal (TRR).Muy pocos ensayos prospectivos, aleatorizados o estudios clínicos abordan el diagnóstico y el tratamiento de este trastorno relativamente frecuente. No hay guías clínicas disponibles hasta la fecha. Este es un documento de consenso revisada de la versión anterior del 2014, que presenta las recomendaciones del Grupo de Trabajo Español de Enfermedades Renales Hereditarias, acordadas tras la búsqueda bibliográfica y discusiones. Los niveles de evidencia en su mayoría son C y D según el Centro de Medicina Basada en Evidencia (Universidad de Oxford). Las recomendaciones se relacionan, entre otros temas, con el uso de diagnóstico por imágenes y genético, el manejo de la hipertensión, el dolor, las infecciones y el sangrado quístico, la afectación extrarrenal, incluida la enfermedad poliquística hepática y los aneurismas craneales, el manejo de la enfermedad renal crónica y el TRR, así como el seguimiento de niños con PQRAD. Se proporcionan recomendaciones sobre terapias específicas para la PQRAD, así como la recomendación para evaluar la rápida progresión. (AU)


Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent cause of genetic renal disease and accounts for 6–10% of patients on kidney replacement therapy (KRT).Very few prospective, randomized trials or clinical studies address the diagnosis and management of this relatively frequent disorder. No clinical guidelines are available to date. This is a revised consensus statement from the previous 2014 version, presenting the recommendations of the Spanish Working Group on Inherited Kidney Diseases, which were agreed to following a literature search and discussions. Levels of evidence mostly are C and D according to the Centre for Evidence-Based Medicine (University of Oxford). The recommendations relate to, among other topics, the use of imaging and genetic diagnosis, management of hypertension, pain, cyst infections and bleeding, extra-renal involvement including polycystic liver disease and cranial aneurysms, management of chronic kidney disease and KRT and management of children with ADPKD. Recommendations on specific ADPKD therapies are provided as well as the recommendation to assess rapid progression. (AU)


Assuntos
Humanos , Rim Policístico Autossômico Dominante/classificação , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/prevenção & controle , Rim Policístico Autossômico Dominante/terapia , Doenças Genéticas Inatas , Literatura de Revisão como Assunto , Consenso , Estratégias de eSaúde
13.
Clin Kidney J ; 15(5): 912-921, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35498884

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and shows a wide phenotype. Only patients with rapid progression (RP) are included in clinical trials or are approved to receive disease-modifying drugs. This study aims at comparing different available predictive tools in ADPKD with the Mayo classification (MC) identification of rapid progressors based on high total kidney volume (TKV) according to age. Methods: A total of 164 ADPKD patients were recruited retrospectively from a single centre. The performance of diverse tools to identify RP defined as being in MC categories 1C-1E was assessed. Results: A total of 118 patients were MC 1C-1E. The algorithm developed by the European Renal Association-European Dialysis and Transplant Association Working Group on Inherited Kidney Disorders/European Renal Best Practice had a low sensitivity in identifying MC 1C-1E. The sensitivity and specificity of TKV to predict RP depend on the cut-off used. A kidney length of >16.5 cm before age 45 years has high specificity but low sensitivity. Assessing the MC by ultrasonography had high levels of agreement with magnetic resonance imaging (MRI) data, especially for 1A, 1D and 1E. The estimated glomerular filtration rate (eGFR) decline was very sensitive but had low specificity. In contrast, the Predicting Renal Outcome in Polycystic Kidney Disease (PROPKD) score was very specific but had poor sensitivity. Having hypertension before 35 years of age is a good clinical predictor of MC 1C-1E. Family history can be of help in suggesting RP, but by itself it lacks sufficient sensitivity and specificity. Conclusions: The MC by ultrasonography could be an option in hospitals with limited access to MRI as it performs well generally, and especially at the extremes of the MC, i.e. classes 1A, 1D and 1E. The eGFR decline is sensitive but not very specific when compared with the MC, whereas the PROPKD score is very specific but has low sensitivity. Integrating the different tools currently available to determine RP should facilitate the identification of rapid progressors among patients with ADPKD.

14.
Clin Kidney J ; 15(11): 2063-2071, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36825031

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder and a major cause of kidney failure worldwide. However, its impact on quality-of-life has not been systematically explored. Methods: The CYSTic-QoL study was an observational study designed to study quality-of-life in adult European ADPKD patients with an estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2. A total of 465 patients were recruited from six expert European centres with baseline data recorded, including health-related quality-of-life (HRQoL), incorporating a Kidney Disease QoL short form questionnaire (KDQoL-SF, version 1.3), magnetic resonance imaging (MRI) for total kidney volume (TKV) measurements and DNA for genotyping. The cohort was stratified by baseline eGFR, TKV or genotype and correlated with HRQoL scores. Bivariate and multivariate analyses were applied to examine the relationship between HRQoL and variables of interest. KDQoL-SF scores were calculated using an online tool provided by the RAND organization. For 36-item short form values, mean centre scores were normalized to their native populations. Results: The mean age of participants was 43 years and 55% were female, with a mean eGFR of 77 mL/min/1.73 m2 and height-adjusted TKV (ht-TKV) of 849 mL/min; 66% had PKD1 pathogenic variants. ADPKD patients uniformly reported decreased general health and less energy, with the majority also experiencing poorer physical, mental or emotional health and limitations in social functioning. A total of 32.5% of participants experienced flank pain, which was significantly and negatively correlated with the majority of KDQoL-SF subscales by multivariate analysis. Higher ht-TKV and lower eGFR were negatively associated with decreased energy and poorer physical health, respectively, although not with flank pain. Conclusion: ADPKD patients suffer from significantly decreased QoL in multiple domains, exacerbated particularly by chronic pain.

15.
Case Rep Genet ; 2022: 3208810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619006

RESUMO

Background: Fabry disease (FD) is an X-linked lysosomal storage disorder caused by pathogenic variants of the GLA gene. Heterozygous female patients may show much more variability in clinical manifestations, ranging from asymptomatic to full-blown disease. Because of this heterogeneous clinical picture in women, the diagnosis of FD has typically been delayed for more than a decade, and the optimal time to initiate treatment remains controversial. Case Presentation. Here, we present two unrelated female patients diagnosed with FD harbouring the same pathogenic GLA variant. We discuss the implications of initiating specific therapy at different stages of the disease, with and without organ involvement (early versus late therapeutic intervention). Conclusions: These clinical cases suggest that initiating specific treatment at an earlier age in women with FD may prevent organ involvement and associated clinical events.

16.
Nephrol Dial Transplant ; 37(4): 687-696, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33532864

RESUMO

BACKGROUND: Inherited kidney diseases are one of the leading causes of chronic kidney disease (CKD) that manifests before the age of 30 years. Precise clinical diagnosis of early-onset CKD is complicated due to the high phenotypic overlap, but genetic testing is a powerful diagnostic tool. We aimed to develop a genetic testing strategy to maximize the diagnostic yield for patients presenting with early-onset CKD and to determine the prevalence of the main causative genes. METHODS: We performed genetic testing of 460 patients with early-onset CKD of suspected monogenic cause using next-generation sequencing of a custom-designed kidney disease gene panel in addition to targeted screening for c.428dupC MUC1. RESULTS: We achieved a global diagnostic yield of 65% (300/460), which varied depending on the clinical diagnostic group: 77% in cystic kidney diseases, 76% in tubulopathies, 67% in autosomal dominant tubulointerstitial kidney disease, 61% in glomerulopathies and 38% in congenital anomalies of the kidney and urinary tract. Among the 300 genetically diagnosed patients, the clinical diagnosis was confirmed in 77%, a specific diagnosis within a clinical diagnostic group was identified in 15%, and 7% of cases were reclassified. Of the 64 causative genes identified in our cohort, 7 (COL4A3, COL4A4, COL4A5, HNF1B, PKD1, PKD2 and PKHD1) accounted for 66% (198/300) of the genetically diagnosed patients. CONCLUSIONS: Two-thirds of patients with early-onset CKD in this cohort had a genetic cause. Just seven genes were responsible for the majority of diagnoses. Establishing a genetic diagnosis is crucial to define the precise aetiology of CKD, which allows accurate genetic counselling and improved patient management.


Assuntos
Doenças Renais Policísticas , Insuficiência Renal Crônica , Adulto , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim , Masculino , Mutação , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética
17.
Clin Kidney J ; 14(11): 2281-2284, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34754424

RESUMO

Pain is the highest prioritized patient-reported outcome in people with autosomal dominant polycystic kidney disease (ADPKD) but it remains infrequently and inconsistently measured across countries, studies and trials. The study by El-Damanawi et al. integrated a network of ADPKD expert clinicians, pain specialists, researchers and patient representatives from the national UK PKD charity, with the aim of addressing the lack of validated ADPKD-specific pain assessment tools (APATs). The APAT designed by the authors included several pain measurement tools and was tested in ADPKD patients, although further validation through assessment in larger cohorts is needed. Establishing a standardized instrument for pain measurement will ensure that pain is measured and reported in a consistent way to inform decision-making and identify effective interventions aimed at managing pain and minimizing the impact pain has on patients with ADPKD. In this context, the APAT established by the authors is to be warmly welcomed.

18.
Clin Kidney J ; 14(8): 1879-1885, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345410

RESUMO

Inherited kidney diseases (IKDs) are among the leading causes of early-onset chronic kidney disease (CKD) and are responsible for at least 10-15% of cases of kidney replacement therapy (KRT) in adults. Paediatric nephrologists are very aware of the high prevalence of IKDs among their patients, but this is not the case for adult nephrologists. Recent publications have demonstrated that monogenic diseases account for a significant percentage of adult cases of CKD. A substantial number of these patients have received a non-specific/incorrect diagnosis or a diagnosis of CKD of unknown aetiology, which precludes correct treatment, follow-up and genetic counselling. There are a number of reasons why genetic kidney diseases are difficult to diagnose in adulthood: (i) adult nephrologists, in general, are not knowledgeable about IKDs; (ii) existence of atypical phenotypes; (iii) genetic testing is not universally available; (iv) family history is not always available or may be negative; (v) lack of knowledge of various genotype-phenotype relationships and (vi) conflicting interpretation of the pathogenicity of many sequence variants. Registries can contribute to visualize the burden of IKDs by regularly grouping all IKDs in their annual reports, as is done for glomerulonephritis or interstitial diseases, rather than reporting only cystic disease and hiding other IKDs under labels such as 'miscellaneous' or 'other'. Any effort to reduce the percentage of patients needing KRT with a diagnosis of 'nephropathy of unknown etiology' or an unspecific/incorrect diagnosis should be encouraged as a step towards precision nephrology. Genetic testing may be of value in this context but should not be used indiscriminately, but rather on the basis of a deep knowledge of IKDs.

20.
Am J Kidney Dis ; 78(4): 560-570.e1, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838161

RESUMO

RATIONALE & OBJECTIVE: Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS: A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS: The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS: Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.


Assuntos
Autoantígenos/genética , Colágeno Tipo IV/genética , Testes Genéticos/métodos , Variação Genética/genética , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nefrite Hereditária/epidemiologia , Insuficiência Renal/diagnóstico , Insuficiência Renal/epidemiologia , Insuficiência Renal/genética , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...